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Abstract. We investigate the Coulomb blockade resonances and the phase of the transmission amplitude
of a deformed ballistic quantum dot weakly coupled to leads. We show that preferred single-particle levels
exist which stay close to the Fermi energy for a wide range of values of the gate voltage. These states
give rise to sequences of Coulomb blockade resonances with correlated peak heights and transmission
phases. The correlation of the peak heights becomes stronger with increasing temperature. The phase of
the transmission amplitude shows lapses by π between the resonances. Implications for recent experiments
on ballistic quantum dots are discussed.

PACS. 73.23.Hk Coulomb blockade; single-electron tunneling – 73.23.Ps Other electronic properties
of mesoscopic systems – 73.40.Gk Tunneling

1 Introduction

Quantum dots have been intensively investigated both ex-
perimentally and theoretically [1] in recent years. In this
paper, we present a theoretical study of the correlations of
conductance peaks and of transmission phases that have
been observed in recent experiments on quantum dots in
the Coulomb blockade regime.

Quantum dots are small islands of electrons that are
only a few hundred nanometers in size and typically con-
tain a few hundred electrons. The spectrum of a quantum
dot is determined by the Coulomb interaction of the elec-
trons and by the external electrostatic confining potential.
The confining potential and hence the size and shape of
a quantum dot can be controlled by external gates. This
makes quantum dots an ideal tool for studying the prop-
erties of finite systems of interacting fermions.

Experimentally, the spectra of quantum dots have been
measured using optical (far-infrared) spectroscopy and/or
transport experiments. In the latter case, the quantum
dot is coupled via tunnel barriers to external leads. The
conductance measured at a finite drain-source voltage
reveals the excitation spectrum of the dot whereas the
linear conductance yields the addition spectrum of the
quantum dot. Both the excitation and the addition spec-
trum are dominated by the classical Coulomb blockade
effect: large conductance peaks are observed when the dot
potential is tuned in such a way that the number of
electrons on the dot can fluctuate without any cost in
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energy. These peaks are nearly periodic in the gate volt-
age on the dot. At consecutive peaks the number of elec-
trons on the dot changes by one. At values of the gate
voltage located between the positions of the conductance
peaks, electron transport through the dot requires a large
charging energy. Hence, the current between conductance
peaks is strongly suppressed, the remaining current being
mostly due to virtual tunneling processes (co-tunneling
regime) [2].

Typically, metallic quantum dots have such a large
density of states that the Coulomb blockade oscillations
can be described by classical theory which ignores the
discreteness of the spectrum. The situation is different in
semiconductor dots. Here, the mean single-particle level
spacing ∆ can be larger than the temperature kT . The
regime ∆ � kT, Γ , where Γ is the strength of the cou-
pling to the leads, is the resonant tunneling regime. In
this regime, each conductance peak is mediated by a single
quantum state of the dot. The peak height of the conduc-
tance resonance is a direct signature of the wave function
of the resonant state.

Some years ago, Jalabert, Stone, and Alhassid devel-
oped a statistical theory of the Coulomb blockade res-
onances [3] in the resonant tunneling regime ∆ � kT .
These authors assumed that the single-particle states
of a quantum dot can be described as eigenstates of
an ensemble of random matrices. This approach pre-
dicts a universal distribution of peak heights determined
by the fundamental symmetries of the system, and no
correlations for the peak heights of neighboring peaks.
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The distribution of peak heights was investigated in
two experiments [4,5]. Good agreement with the Porter-
Thomas statistics of Random Matrix Theory (RMT) was
found. Other quantities like the distribution of spacings
between resonances [6] and particularly peak height cor-
relations [5,10] showed deviations from the predictions of
RMT1.

Alhassid, Gökcedag and Stone [7] extended the statis-
tical theory of the Coulomb blockade resonances to the
regime where the resonant tunneling condition ∆ � kT
is not fully met. Then, a single conductance peak receives
contributions from several single-particle states which lie
in the vicinity of the Fermi energy, and correlations in the
peak heights of adjacent resonances are expected to occur.
In reference [5] significant correlations in the peak heights
of 4–5 adjacent resonances were observed experimentally
even for ∆ > kT . This question was analyzed further in a
very recent experiment [10]. The authors of reference [10]
found that the correlations increase with increasing tem-
perature. In both experiments [5,10] the correlations ex-
ceed those predicted by RMT.

Even stronger correlations have been reported in
experiments using a quantum dot embedded in an
Aharanov-Bohm ring [11]. In this experiment where the
lithographic shape of the dot was more regular than in
reference [5,10], both peak heights and phases of the trans-
mission amplitude could be measured. Strong correlations
both in peak height and in phase within sequences of
more than 10 resonances were found. As in references [10],
temperature can be ruled out as the only source of cor-
relations, and a mechanism different from and acting in
addition to temperature must be the origin of these cor-
relations.

In this paper we propose such a mechanism. Our model
involves certain geometry-specific assumptions and is
therefore restricted in generality and universality. Nev-
ertheless it may still pertain to experiments on nearly
integrable ballistic dots (cf. Sect. 3). Our mechanism is
a synthesis of two approaches developed earlier [12,13].
In reference [12] a scenario was described for peak corre-
lations at vanishing temperature. It was argued that de-
formation of the confining potential of the dot generically
gives rise to avoided crossings of the single-particle lev-
els on the dot. As a result of such crossings one and the
same eigenstate of the dot may dominate a sequence of
neighboring conductance peaks [12] and thereby cause cor-
relations. Although several arguments in support of this
mechanism were given [12], a quantitative study of the
resulting correlations has not been presented yet. A dif-
ferent line of thought was pursued in reference [13]. That
paper aimed at explaining the “phase lapse” observed in
the experiment of reference [11] (a different theoretical
discussion of the phase lapse was presented in Ref. [14]).
It was shown [13] that the phase-lapse behavior as well

1 The deviations of the former from RMT may be due to the
limitation of the constant interaction model for the Coulomb
interaction [8]. It has also been suggested that deformations
of the dot confining potential are involved [9] rather than a
breakdown of RMT.
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Fig. 1. A quantum dot (schematic). Electrons enter or leave
the dot through the tunneling barriers A and B. The plunger
gate P controls the number of electrons on the dot. Equipoten-
tial lines of the confining potential are shown for the isotropic
(dashed) and deformed (dotted) case.

as strong finite temperature correlations of conductance
peaks arise if the dot supports one particularly well con-
ducting state. This state would dominate a sequence of
conductance peaks provided it remained within an energy
interval of order kT around the Fermi energy.

Here we study peak-height correlations and the trans-
mission phase in quantum dots taking a deformed har-
monic oscillator as a specific example. Using this model,
we show that deformation of the confining potential leads
to peak-height correlations, in keeping with the arguments
of reference [12]. We identify those eigenstates of the quan-
tum dot that are most strongly coupled to the external
leads and which, therefore, support the bulk of the current
through the dot. Peak-height correlations are strongest for
sequences of resonances mediated by such states. We also
investigate the influence of temperature on the correla-
tions. As expected from the studies in reference [13], we
find that temperature leads to a marked increase of the
correlations. Combining the effect of deformation and of
temperature, we obtain sequences of up to 30 conductance
resonances with similar transmission phases and similar
peak heights. We address the question whether this same
mechanism might also account for the phase behavior ob-
served in reference [11].

The paper is organized as follows: in the next section
we introduce a model for a deformed quantum dot and
describe how correlations can arise. In Section 3 we calcu-
late the conductance with the help of a master equation.
In Section 4 we investigate the transmission phase. This
phase can be measured in Aharonov-Bohm type experi-
ments containing a quantum dot. The last section gives a
summary and a discussion of the limitations of our model.

2 The model

The confining potential of a quantum dot is often defined
electrostatically in terms of a split gate. As depicted in
Figure 1, this is an arrangement of electrodes on the sur-
face of a heterostructure. When a negative bias is ap-
plied to the gates, the two-dimensional electron gas lo-
cated some 100 nm or so beneath the electrodes will be
depleted. The barriers through which electrons can tun-
nel between the leads and the dot are denoted by A and
B. A voltage Vg applied to the plunger gate P controls



R. Baltin et al.: Correlations in deformed quantum dots 121

the chemical potential on the dot. A change of Vg not only
changes the number of electrons on the dot but also dis-
torts the confining potential of the two-dimensional elec-
tron gas in a substantial way, causing a deformation of the
quantum dot [12].

We consider the standard Hamiltonian H for a quan-
tum dot coupled to leads, containing the Hamiltonians
HL and HR of the left and right leads, respectively, the
Hamiltonian of the isolated quantum dot HD, and the
Hamiltonian HT for tunneling between the leads and the
dot,

H = HL +HR +HD +HT, (1)

HL(R) =
∑
k

ε
L(R)
k a

L(R)
k

†
a

L(R)
k ,

HD =
∑
n

εnc
†
ncn +

1

2
UN̂(N̂ − 1),

HT =
∑
n,k

(
V L
n,ka

L
kc
†
n + h.c.

)
+
∑
n,k

(
V R
n,ka

R
k c
†
n + h.c.

)
.

Here, εL,Rk and εn are the energies and aL,R
k and cn the an-

nihilation operators for single-particle states in the leads
and in the dot, respectively. For the Coulomb interaction
on the quantum dot we use the constant interaction model
with N̂ =

∑
n nn the number of electrons on the quan-

tum dot. The tunneling matrix elements V
L(R)
i,k involve

the overlap of wave functions in the leads and in the dot
and are given below.

We model the confining potential as an anisotropic
harmonic oscillator potential. A harmonic potential has
been used previously in studies of quantum dots [15] and,
at least for small dots, is believed to be a fair approxi-
mation to the true confining potential. Although we use a
specific model, most of our conclusions apply to any suffi-
ciently smooth confining potential for which the Hamilto-
nian is nearly integrable. Then, the transverse and longitu-
dinal modes in the dot are nearly decoupled (cf. Eq. (2)).
This condition is met when the matrix elements of the
perturbation violating integrability are smaller than the
mean single-particle level spacing. However, even mild dis-
order or boundary roughness violating this condition will
modify our picture considerably.

The energy eigenvalues εn for the quantum numbers
n = (nx, ny) are given by

εn = E(nx, ny)

= ~ωx(nx+
1

2
)+~ωy(Vg)(ny+

1

2
)−αVg+E0. (2)

To describe the deformation, we assume that the oscillator
frequency ωy(Vg) = ωx(1 − γ(Vg − V0)) in the transverse
direction y depends linearly on the gate voltage Vg while
the frequency ωx in the longitudinal x-direction is held
fixed. The parameter α relates the overall depth of the
dot’s potential to the gate voltage. The constants E0 and
V0 determine the number of electrons on the dot at zero
deformation.

The dependence of the single-particle levels on the gate
voltage is shown in Figure 2. The shell structure of the
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Fig. 2. Dependence of the single-particle energies of the dot
on the gate voltage Vg.

isotropic harmonic oscillator (Vg = V0) is clearly visible.
It survives for small values of Vg but is eventually de-
stroyed by deformation. Each shell q is characterized by
non-negative integer quantum numbers q = nx + ny. In
each shell, there are levels depending weakly (strongly) on
Vg, characterized by large (small) values of nx and small
(large) values of ny, respectively. These are referred to as
“flat levels” and “steep levels”, respectively. A small de-
viation from integrability will change the level crossings
shown in Figure 2 into avoided crossings. For nearly inte-
grable systems, the wave functions retain their character
across avoided crossings. Flat levels are particularly sta-
ble, their wave functions change little with deformation
(or gate voltage) and remain self-similar even after sev-
eral avoided crossings [12].

The matrix elements V L, V R for tunneling from the
left and right lead to the quantum dot are given by [16]

V L(R)(k, nx, ny) =
~2

2m

∫
B

dy

[
ψk(x, y)∗

∂Φnx,ny(x, y)

∂x

−Φnx,ny
∂ψk(x, y)∗

∂x

]
x=xB

. (3)

Here ψ
L(R)
k is the wave function with wave vector k in the

left (right) lead, and Φnx,ny is the wave function in the
dot. The integration extends in the y–direction and xB is
arbitrary but must be located within the barrier [16]. We
restrict ourselves to the case of a single transverse channel
in each lead. The nodes of the wave functions of flat (steep)
levels with large nx (ny) are predominantly carried by the
x-component (y-component, respectively). Thus, the wave
functions of flat levels extend much further into the bar-
rier region and have considerably larger matrix elements
V L(R)(k, nx, ny) than those of the steep levels. This impor-
tant property is illustrated in Figure 3. It has immediate
consequences for the conductance at finite temperature:
the very same single-particle state can dominate different
Coulomb blockade resonances seen at different values of Vg

[12]. We now explain this feature qualitatively, postponing
a detailed discussion to later sections.
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x
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n  =0n  =2x

Fig. 3. The thin solid line shows a cross-section of the potential
in longitudinal direction, the two barriers lying at opposite
ends. The overlap of the dot wave functions (probability shown
as dashed lines) and of the lead wave function (probability
shown as a solid line on the left) increases strongly with the
quantum number nx in x-direction.

At low temperature (kT � ∆) and for small bias
voltage, the transmission through the dot can be quali-
tatively obtained from the mean-field approximation for
the dot spectrum. In this approximation, each single-
particle energy εi is replaced by the effective value εi =
εi + U

∑
j 6=i〈nj〉 [17,18]. According to Koopmans’ theo-

rem, εi is the energy needed to add an electron in state
i to the dot, whereas the excitation energy at fixed elec-
tron number is given by the difference of the corresponding
two effective energies. Because of the Coulomb interaction,
there is a gap of magnitude U between the last occupied
and the first empty effective single-particle level, while the
other occupied (empty) levels below (above) the Fermi en-
ergy EF are on average separated by the usual mean level
spacing∆. Avoided crossings of single-particle levels result
in avoided crossings of the effective levels, in spite of this
gap [12].

A Coulomb blockade resonance occurs, and the num-
ber of electrons on the dot changes by one, whenever an
effective single-particle level crosses the Fermi energy EF

of the reservoirs (we assume EF to be independent of
the gate voltage in the following). For U � ∆, the dis-
tance between adjacent resonances is δVg = U/α. Without
level crossings, different resonances correspond to differ-
ent single-particle levels. In the presence of level crossings,
the situation changes. This is shown in Figure 4 which dis-
plays the gap between the filled levels below and the empty
ones above EF. Resonances occur at gate voltages V1, V2

and V3. Suppose a flat level F (dashed) crosses EF at V1.
If there is an avoided crossing of F with a steep level S1

from a higher shell between V1 and V2, level F is pushed
above EF while level S1 is immersed into the Fermi sea.
At V2 the flat level F crosses EF again, causing another
resonance to occur. The mechanism works again between
V2 and V3 where another steep level S2 intersects with F .
Since flat levels keep their wave functions after avoided
crossings, the resonances at V1, V2 and V3 all carry the
same single-particle wave function. This mechanism gives
rise to strong correlations of the properties (peak height
and transmission phase) of several resonances. However,
it leads to strong correlations only if there is one and only

F

U

∆

E

Vg

E
F

S S

V V V1 2 3

1 2

Fig. 4. Avoided crossings with the steep levels S1 and S2 cause
the flat level F (dashed) to stay close to the Fermi energy
EF. Resonances dominated by this level occur at gate voltages
V1, V2, V3. There is a gap of magnitude U between the last
occupied and the first empty level.

one crossing of the flat level F with a steep level within
subsequent intervals δVg. If – on average – there is less
than one (more than one) crossing, the level F will even-
tually be pulled down below (up above) the Fermi energy
and will become irrelevant for the behavior of Coulomb
blockade resonances.

It is essential for our picture for peak correlations that
there be one avoided crossing with a flat level between ev-
ery two successive Coulomb peaks. At finite temperature,
this condition need not to be met exactly for each pair
of successive peaks, but must be fulfilled on average for a
sufficiently large number of pairs. We investigate this con-
dition first within our model and later turn to the situa-
tion found experimentally. Within our model, the number
of intersection points of a flat level (nx 6= 0, ny = 0) with
steep levels from higher shells is found using equation (2).
The total number of crossings of the flat level occurring
in the range Vg − V0 is

Nc =
n2
x

2

γ(Vg − V0)

1− γ(Vg − V0)
· (4)

The number of steep levels from higher shells increases
with deformation and causes Nc to increase, too, until it
diverges for the unphysical situation of extreme deforma-
tion ωy → 0. One crossing within an interval δVg = U/α
occurs for (∂Nc)/(∂Vg) = α/U . This condition yields the
value V ∗g where maximal correlations between Coulomb
blockade resonances are found and is used below in the
calculations. We estimate the number ∆N of correlated
levels as the number of resonances for which the distance
between the flat level (nx, 0) and the Fermi energy is less
than one level spacing. This yields

∆N ' 2

√
nx

√
α

2γU
, (5)

with a deformation ωy/ωx =
√

(γU)/(2α) nx. The
result (5) explicitly relates the number of correlated levels
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to our model parameters. We note that ∆N sets an up-
per bound for the number of correlated peaks. In fact, for
voltages Vg different from V ∗g the number of level crossings
no longer matches the number of Coulomb peaks. In this
case, the sequences of correlated peaks are shorter than
∆N . This weakens the correlations.

We have shown that within our harmonic oscillator
model the condition for having on average one avoided
crossing with a flat conducting level between every two
successive Coulomb peaks can be met over a significant
range of gate voltages. The number of correlated peaks
within the model depends on the parameters α and γ
which characterize the size and shape of the confining po-
tential. Experimentally, we expect a similarly strong de-
pendence of the peak correlations on the size and geometry
of the actual quantum dot. As a result, predicting the cor-
relations for a specific experimental setup necessarily re-
quires the knowledge of the underlying confining potential
and, hence, the solution of the corresponding electrostatic
boundary-value problem. Such a calculation is beyond the
scope of the present paper. Therefore, we confine ourselves
to the following semiquantitative remarks. Theoretical es-
timates [12] have shown that for a typical setup the con-
fining potential may indeed be well approximated by that
of an anisotropic harmonic oscillator. It was also shown
that near zero deformation and over a range of gate volt-
ages, the number of level crossings may equal the number
of Coulomb peaks [12]. Here we quantify these arguments.

In reference [12] a set-up with fixed barriers was con-
sidered. The authors of [12] allowed the shape of the
potential to change not only in y-direction, but also in
x-direction, i.e. ωy → ωy(1− η) and ωx → ωx(1 + η). By
an electrostatic estimate the deformation η could be re-
lated to the number of electrons in the dot. The change
in η which occurs when another electron enters the dot
is compared to the change in deformation which is neces-
sary for two successive level crossings. Within this model
we calculate the number of resonances over which a cer-
tain flat level stays within an interval of one level around
the Fermi energy. We find that near zero deformation for
dots containing 100−200 electrons this condition is met
for 15−25 resonances.

We emphasize that these results do not hold generi-
cally but apply only over a specific range of gate voltages.
This suggests that we cannot expect generically to find
long sequences of correlated Coulomb peaks. Rather, such
sequences are confined to specifically chosen flat levels.
However, it must be borne in mind that the flat levels are
the ones which carry by far the largest current, and thus
give the strongest experimental signal. When the exper-
imentalist adjusts the dot parameters so as to record a
sequence of Coulomb peaks, he/she is more likely to pick
such a level rather than one of the poorly coupled ones.
This fact may lead to particularly strong correlations in
experiments performed on nearly integrable dots.

So far, we have focussed attention on the resonant tun-
neling regime Γ, kT � ∆ where only the level at the Fermi
energy determines the properties of the resonance. Essen-
tial modifications arise for finite temperatures kT ∼ ∆.

Here, also levels at a distance ∼ kT from EF contribute
to the resonance. Since the flat levels are coupled to the
leads much more strongly than the steep ones, the pres-
ence of a flat level at a distance ∼ kT from EF suffices
for it to dominate the resonance. Long sequences of corre-
lated resonances may occur if repeated avoided crossings
cause a flat level F to stay sufficiently close to EF over a
sufficiently long range of Vg values. This is the picture we
investigate quantitatively for the case of an anisotropic
harmonic oscillator in the sequel. The picture suggests
that the correlations of consecutive Coulomb blockade res-
onances will increase with temperature.

3 Coulomb blockade resonances

In this section we calculate the conductance G of a quan-
tum dot with the single-particle spectrum (2) in linear re-
sponse. We use the master equation [19]. In the Coulomb
blockade regime, maxima inG occur for values of Vg where
the configurations with N and N + 1 electrons on the dot
are degenerate. The resulting sharp conductance peaks are
almost equally spaced [1,19]. For kT � ∆ each peak is
due to a single level n of the dot, and the peak height is
given by G ∼ ΓL

n Γ
R
n /(Γ

L
n + ΓR

n ) [19] with the tunneling

rates Γ
L(R)
n ∼

∑
k |V

L(R)
k,n |

2δ(εn− ε
L(R)
k ). We note that the

peak heights are highly sensitive to the wave functions in
the dot. Strongly coupled levels give higher peaks than
the weakly coupled ones. For finite temperature several
single-particle states contribute to a resonance.

Under the assumption of sequential tunneling, trans-
port through the dot at finite temperature is described
by the master equation [19]. In the regime kT � Γ this
equation determines the occupation probabilities Pν of the
single-particle levels of the dot under the influence of the
interaction U and of the coupling to the leads. It is given
by

∂

∂t
Pν =

∑
µ(6=ν)

PµΓin(µ→ ν)− PνΓout(ν → µ) . (6)

Here µ and ν label Fock states, i.e., Slater determinants
defined in terms of the occupation numbers of all single-
particle states in the dot. The symbols Γin and Γout stand
for the rates of the tunneling processes into and out of
the dot. These processes change the number of electrons
on the dot by one, and the associated Fock states from µ
to ν, and vice versa. The rates contain not only the cou-
pling of the specific single-particle states of the dot to the
leads but also take into account a possible suppression of
tunneling by the occupation of the states in the leads. By
expanding equation (6) around the equilibrium probabil-
ity distribution Beenakker [19] obtained the conductance
G for small bias voltage,

G =
e2

kT

∑
n

∞∑
N=1

ΓL
n Γ

R
n

ΓL
n + ΓR

n

P eq
N [1− F eq(εn|N)]

×f(εn + UN). (7)
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Table 1. Tunneling rates for several levels n calculated from equation (10). In geometry (i) the leads are opposite to each other

with ξx =
√

50 and ξy = 0. In geometry (ii), the leads are arranged at an angle, with ξx = ξy =
√

50/2.

n = (nx, ny) (14, 0) (0, 14) (6, 8) (12, 0) (6, 6)

Γn for geometry (i) 2.68× 10−6 4.04 × 10−23 5.34 × 10−14 9.09 × 10−8 6.11× 10−14

Γn for geometry (ii) 6.30 × 10−12 6.30 × 10−12 5.66 × 10−7 2.88× 10−12 2.41× 10−8

Here, f is the Fermi function and P eq
N is the probability

to find N electrons on the dot,

P eq
N =

trN exp(−βHD)

tr exp(−βHD)
=

trN exp(−βHD)∑
N trN exp(−βHD)

· (8)

The inverse temperature is denoted by β, and trN denotes
the trace over the Fock states with N electrons on the dot.
The canonical occupation number of level n when there
are N electrons on the dot is given by

F eq(εi|N) ≡ 〈n̂i〉N =
trN (ni exp(−βHD))

trN exp(−βHD)
· (9)

Equation (7) has also been derived [20] using a Landauer-
Büttiker type approach generalized to include the inter-
action of electrons on the dot.

Numerically, it turns out to be sufficient to calculate
F eq(εn|N) for a window of levels around the Fermi energy,
and to take the occupation numbers equal to 1 below and
0 above this window. The following results are obtained
using a window of 16 levels that are populated with 8
electrons. We checked that our results are insensitive to
changes of the window size.

Using equation (3) and the relation Γ
L(R)
n ∼∑

k |V
L(R)
k,n |

2δ(εn− ε
L(R)
k ), we find that the tunneling rates

Γn are proportional to the square modulus of the harmonic
oscillator wave functions at the position of the barriers
r = (xB, yB),

Γn ∼
(Hnx(ξx)Hny(ξy))2

2(nx+ny) nx! ny!
e−(ξ2x+ξ2

y), (10)

where Hn are the Hermite polynomials and where we
have used dimensionless variables ξx =

√
mωx/~ xB and

ξy =
√
mωy/~ yB. Neglecting deformation we can relate

the barrier height VB to the position of the barrier via
VB/~ωx = (ξ2

x + ξ2
y)/2. In the sequel we choose a fixed

value VB/~ω = 25 for the barrier height2. We consider
two different geometries of the leads connecting the quan-

2 Compared with typical experimental parameters this value
appears to be too small. We use this value in order to avoid
an unphysically large increase of Γ with increasing quantum
number nx. Such a strong increase is characteristic of the har-
monically shaped barrier. A less steep increase would be ob-
tained for steeper tunneling barriers. Such barriers appear to
give a more realistic description of the depletion zone of the
electron gas near the gates. For reasons of consistency with
the harmonic oscillator model used throughout this paper, we
decided to use harmonic barriers.

tum dot with external reservoirs:

(i) the two leads are located exactly opposite to each
other, so that ξx = ±

√
50 and ξy = 0;

(ii) the leads are arranged at an angle of 90 degrees, with

the barriers at ξx = ξy = −
√

50/2 and ξx = −ξy =√
50/2.

The latter geometry has been used, for instance, in the
experiment of reference [5].

The tunneling rates Γn for both geometries and for
several states n are presented in Table 1. We note that for
geometry (i) the flat levels are coupled much more strongly
to the leads than the steep ones (columns 1 and 2). Com-
paring the rates for the flat levels of different shells we
find a considerable increase with increasing nx (columns 4
and 1). For geometry (ii) the states within one shell with
equal quantum numbers nx and ny are most strongly cou-
pled to the leads. However, the difference between strongly
and weakly coupled states is not as pronounced as in
geometry (i).

We conclude that independently of the precise shape
of the barrier, in a geometry of type (i) which is realized
in Figure 1 flat levels are more strongly coupled to the
leads than steep levels. This is because the wave func-
tions of flat levels have cigar-like shapes extending closer
to the leads (cf. Fig. 3). Therefore, flat levels carry the
bulk of the current. The difference between well coupled
and poorly coupled dot states is less pronounced when the
leads are arranged at an angle (geometry (ii)). In this case,
the mechanism for peak correlations described in Section 2
leads us to expect a reduction in the length of sequences
of correlated peaks.

We present results for α = 1, γ = 0.005, E0 = −11
and V0 = 90. At zero deformation, the mean level spacing
∆ is related to the harmonic oscillator frequency ωx in
x-direction by

∆ =
EF

Nel
=

~ωxNsh

1
2 (Nsh + 1)(Nsh + 2)

≈
2~ωx
Nsh

· (11)

Here Nsh is the number of the last filled shell and Nel =
(Nsh + 1)(Nsh + 2)/2 is the total number of electrons
on the dot. We take Nsh = 14 so that there are about
100 electrons on the dot. We assume ∆ = 0.03U which
roughly corresponds to the situation of the experiments of
references [5,11].

In order to monitor the influence of a flat level F on the
conductance, we define the distance d of F from the Fermi
energy as the number of levels between F and the Fermi
energy including F itself and count positively (negatively)
for states above (below) the Fermi energy. Thus, d = 1 in-
dicates that F is the first unoccupied level. Figure 5 shows
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Fig. 5. Distance d (in number of levels) of the flat level (nx =
14, ny = 0) from the Fermi energy EF versus gate voltage Vg.

d vs. gate voltage for the flat level nx = 14, ny = 0. Ad-
jacent points correspond to adjacent Coulomb blockade
resonances. For 130 < Vg < 160, F stays in the vicinity of
the Fermi energy. Hence there is – on average – one cross-
ing with a steep level in the interval δVg. For Vg < 130
(Vg > 160), the number of avoided crossings in the inter-
val δVg is less than one (bigger than one), and F moves
towards the (away from the) Fermi energy, respectively.
The jumps at Vg = 156 and Vg = 180 are due to multiple
crossings of levels which occur because of the integrability
of our model.

For the same choice of parameters as in Figure 5 and
for geometry (i), Figure 6 shows the conductance vs. gate
voltage for two temperatures, kT = 0.2∆ (Fig. 6a) and
kT = 0.4∆ (Fig. 6b). About 100 Coulomb blockade reso-
nances occur in the interval 100 < Vg < 200. In both plots
strong peaks with similar peak heights appear whenever
the flat level F is close to the Fermi energy, especially at
the higher temperature (Fig. 6b). In the regions Vg < 130
and Vg > 160 where the conductance is not dominated by
the flat level F , G is much smaller than in the interval
130 < Vg < 160. On the scale of Figure 6, some of the
conductance peaks are not even visible.

Figure 7 shows the conductance vs. gate voltage for
the same parameters as in Figure 6b but for geometry
(ii). Now, the resonances are dominated by steeper levels
from higher shells which are coupled more strongly to the
leads than the flat level. This is why the peak heights
are bigger on average than in Figure 6, why they show
stronger variation, and why they increase systematically
with increasing gate voltage.

4 Phase

We now turn to the behavior of the phase of the trans-
mission amplitude through the quantum dot. This phase
has recently been measured in a set of experiments using
an Aharonov-Bohm (AB) interferometer with a quantum
dot embedded in one of its arms. We consider the simplest
case where the AB interferometer is coupled to only one
channel in each connecting lead. The transmission coeffi-
cient T through the AB device is then given by

T ≈T0 + 2Re

{
t∗0e−2πiΦ/Φ0

∫
dE

(
−
∂f

∂E

)
tQD(E)

}
. (12)

Here, T0 = |t0|2 is a flux- and energy-independent term
given by the square of the amplitude for transmission
through the empty arm of the AB interferometer, while
tQD is the amplitude through the arm containing the dot.
Since the quantum dot is weakly coupled to the arm, we
have |tQD| � |t0|. We have explicitly displayed the de-
pendence on the magnetic flux Φ through the AB device
and neglected higher harmonics. The symbol Φ0 = h/e
denotes the elementary flux quantum.

The master equation used in Section 3 deals with occu-
pation probabilities and is, therefore, not able to yield the
phase of the transmission amplitude tQD. We have used
another approach. We have expressed tQD in terms of the
retarded Green function Gret of the dot,

tQD(E) =
∑
i,j

V L
i (E)Gret

ij (E)V R∗
j (E) . (13)

The finite-temperature Green function Gret must be cal-
culated in the presence of the interaction U and the tun-
neling. A derivation of Gret starting from the equations of
motion is given in Appendix 5. Assuming that the total
number of electrons on the dot is a constant of motion,
we obtain

Gret
ij (E) ≈ δij

∞∑
N=0

P eq
N

[
1− 〈n̂i〉N

E − (εi − µ+ UN) + iΓi/2

+
〈n̂i〉N

E − (εi − µ+ U(N − 1)) + iΓi/2

]
. (14)

Here Γi = ΓL
i + ΓR

i and µ = αVg. The probability P eq
N

that there are N electrons on the dot and the canonical
occupation number 〈n̂〉N are given in equations (8, 9),
respectively.

Within our approximations the Green function Gret is
diagonal. This fact implies that real (particle-hole) exci-
tations of the dot caused by tunneling transitions are not
taken into account. This is justified in the regime of elastic
cotunneling kT <

√
U∆ where inelastic cotunneling pro-

cesses do not contribute significantly to the transmission
[2]. Equation (14) is a good approximation to the exact
retarded Green function between Coulomb blockade reso-
nances where fluctuations in the occupation number of the
dot are strongly suppressed. Moreover, even at resonance
where Gret reduces to a single Breit-Wigner term, equa-
tion (14) is expected [21] to apply provided there are no
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Fig. 6. Conductance G vs. gate voltage for (a) kT = ∆/5 and (b) kT = 2∆/5.
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Fig. 7. Conductance G vs. gate voltage Vg for the same pa-
rameters as in Figure 6b but with the leads arranged at an
angle of 90 degrees.

degeneracies and we work well above the Kondo temper-
ature [22]. The success of equation (14) in these limiting
cases suggests that well above the Kondo temperature,
equation (14) is a good approximation to the exact Green
function for all energies.

Combining equations (14, 12) we obtain

T = T0 + Re t∗0 t̃QD e−2πiΦ/Φ0 , (15)

where

t̃QD =

∫
dE

(
−
∂f

∂E

)
tQD(E)

=
β

2πi

∑
i

∞∑
N=0

V L
i V

R∗
i P eq

N

×

[
(1−〈n̂i〉)ψ

(1)

(
β

2πi
(iΓi−εi+µ−UN)+

1

2

)
+ 〈n̂i〉ψ

(1)

(
β

2πi
(iΓi−εi+µ−U(N−1))+

1

2

)]
(16)

with the trigamma function ψ(1).
In Figure 8 we show the phase φ of the transmission

amplitude versus gate voltage. As in the calculation of
the conductance in Section 3, the canonical occupation
numbers are obtained by distributing 8 electrons over a
window containing 16 levels. We take Γi = Γ = 0.002U =
∆/15. The solid lines at the bottom of the plots show the
conductance peaks and help to identify the resonance po-
sitions. In the left part of Figure 8 the flat level nx = 14,
ny = 0 is close to the Fermi energy. Here we find a strik-
ingly similar behavior of the phase at all resonances. This
behavior is found not only within the Vg interval shown
but for the entire interval 130 < Vg < 160 comprising 30
resonances. The phase regularly increases by π at reso-
nance and displays a sharp lapse by π between adjacent
resonances. As observed in references [13,14] the increase
at resonance occurs on the scale kT (we assume kT > Γ )
and the phase lapse between resonances on the scale Γ .
The temperature dependence of the phase is shown in
Figure 9. In the right part of Figure 8 we show the
transmission phase for the case where the distance be-
tween the flat level and the Fermi energy is large com-
pared to kT and increases with Vg (cf. Fig. 5). The
phase behaves less regularly, with an increase by π or less
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Fig. 8. Phase φ of the transmission amplitude versus gate voltage Vg at kT = ∆/5 in two different intervals. The solid lines at
the bottom of the plots display the conductance peaks. In the case shown in the left (right) part, the flat level nx = 14, ny = 0
is at or near (far removed from) the Fermi level, respectively. In the case of the right part, the flat level influences the phase as
a background only.

146.5 146.7 146.9 147.1 147.3 147.5
Vg

-0.5

0.0

0.5

1.0

1.5

ϕ/
π

Fig. 9. Transmission phase for kT = 0.2∆ (open circles) and
kT = 0.4∆ (filled circle). The increase by π at the resonance
takes place on the scale kT , the phase lapse between reso-
nances, on the scale Γ .

at and an immediate phase lapse near the resonances. Be-
tween resonances the phase remains virtually constant.

To interpret our results, we consider first the phase φ
at resonance. The identical behavior of φ at all resonances

in Figure 8a reflects the fact that at each resonance, the
transmission through the dot is dominated by the strongly
coupled level F . This is the same mechanism as in the se-
quence of strong conductance peaks shown in Figure 6a.
The more erratic phase behavior seen in Figure 8b is the
result of the interplay of various levels of the dot. The
regular behavior of the phase lapse between adjacent res-
onances is also due to the dominance of the flat level.
At finite temperature the flat level F has a finite proba-
bility of being either occupied or empty and, thus, may
contribute to both an electron-like and a hole-like cotun-
neling process. The contribution of both processes to the
transmission amplitude through the dot is

tF = V L
F V

R∗
F

[
1− 〈n̂F〉N

E − (εF − µ+ UN) + iΓF/2

+
〈n̂F〉N

E − (εF − µ+ U(N − 1)) + iΓF/2

]
(17)

where the first (second) term represents the electron-like
(hole-like) contribution, respectively. As the gate volt-
age Vg = µ/α scans the Nth valley (i.e. varies from
(εN +U(N − 1))/α to (εN+1 +UN)/α), the sign of Re tF
reverses, leading to a phase lapse. The same conclusion
has previously been reached in reference [13]; an interpre-
tation in terms of scattering theory has been given in ref-
erence [14]. If F is far away from the Fermi energy (on the
scale of kT ) either the particle-like or the hole-like process
will dominate, and the phase lapse moves from the valley
towards the resonance, as depicted in Figure 8b.
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We emphasize that the phase lapse between resonances
is a genuine interaction effect. Indeed, the interaction U is
needed to keep the flat level close to the Fermi energy for
a long sequence of resonances. For non-interacting parti-
cles (U → 0) the transmission amplitude at different res-
onances would be dominated by different single-particle
levels. In the same limit, the cotunneling amplitude (17)
would reduce to a single, temperature-independent term.
The phases of the transmission amplitude in consecutive
valleys would not be correlated, and there would be no
systematic phase lapse between resonances. We also note
that the systematic phase lapse occurs only at finite tem-
perature. At zero temperature a flat level could only con-
tribute to either particle-like or hole-like cotunneling.

5 Summary – The question
of non-universality

Since the first measurements on quantum dots in
Aharonov-Bohm interference devices were reported, many
aspects of phase-coherent transport through quantum
dots have been understood theoretically. However, one of
the most striking features, the strong correlations of the
transmission phases in sequences of many resonances, has
long withstood a satisfactory theoretical explanation. Ear-
lier attempts [13] to solve the problem could account for
short sequences but not for the sequences of more than 10
resonances found experimentally.

In this paper we have demonstrated the viability of
a mechanism, based on a synthesis of the ideas proposed
in references [12,13], that gives rise to long sequences of
correlated peak heights and transmission phases. We have
used several approximations, the most central one being
that the confining potential defining the dot is “almost”
integrable. More precisely, both the deviation from inte-
grability and the disorder must constitute a perturbation
which is small on the scale of the mean single-particle level
spacing. Regarding the experiments of reference [11], we
do not know whether the quantum dots used do obey this
condition, and whether one avoided crossing per added
electron did occur on average. If this were indeed the case,
our model might account semiquantitatively for the phase
correlations observed in these experiments. Nevertheless,
our analysis naturally falls short of providing a complete
and universal framework which could account for the com-
bined effect of disorder and interaction on correlations in
transmission experiments.

We have used the following specific conditions and as-
sumptions.

(i) Among the eigenstates of the quantum dot, some must
be coupled more strongly to the leads than others.
This assumption is met by a model which is nearly
integrable, as is the case for our parabolic confining
potential. This potential renders (nx, ny) good quan-
tum numbers for all values of Vg. Of all levels in a shell,
the level with ny = 0 is most strongly coupled to the
leads.

(ii) Changes in the gate voltage induce deformations of the
dot boundary such that the potential is deformed in
the transverse y-direction. This assumption guarantees
that in each shell, the level with ny = 0 is flat, i.e.,
stays close to the Fermi energy over a wide range of
Vg-values.

(iii) On average there is one crossing of the flat level with
one other level per unit interval. This interval is defined
by the change in Vg needed to add an extra electron
to the dot.

(iv) The temperature is sufficiently high to produce suf-
ficiently long sequences of correlated resonances. The
minimum temperature required by this condition de-
pends both on the distance of the most strongly cou-
pled level from the Fermi energy, and on the relative
strength of the coupling of that level to the leads. With
increasing temperature the correlations become more
robust.

Strong boundary deformations leading to strongly
chaotic classical motion within the dot, or strong disor-
der in the dot are likely to destroy the correlations alto-
gether since they generically do not allow for the existence
of eigenstates that are particularly well coupled to exter-
nal leads. In this sense, the correlations proposed in the
present paper are non-universal in origin.

Our ideas may be checked experimentally on dots that
are not embedded in an AB device but are coupled directly
to leads. This setup does not allow for tests of phase cor-
relations but provides a convenient setup for measuring
conductance peak correlations. The conductance of a dot
with a regular (rectangular) lithographic shape has been
measured by Simmel et al. [23]. These authors did indeed
find a sequence of more than 10 strong peaks with very
similar peak heights. In the same sweep they also observe
envelopes of smaller peaks very similar to our results in
Figure 6. To test our picture further, it would be illu-
minating to perform a similar two-terminal conductance
experiment with leads attached at two sides of the dot
which form an angle of 90 degrees. Here, a reduction of
the correlations is to be expected. It would also be inter-
esting to compare two setups, one with a plunger gate and
the other with a backgate configuration. In the latter case
the potential deformation is reduced. This should suppress
our correlation mechanism.

This work was supported by the German-Israeli Foundation
(GIF), by the Israel Science Foundation founded by the Is-
rael Academy of Sciences and Humanities-Centers of Ex-
cellence Program, and by the U.S.-Israel Binational Science
Foundation (BSF).

Appendix A: Retarded Green function

We derive equation (14). The retarded Green function is
defined as

Gret
kl = −iθ(t) 〈[ck(t), c†l (0)]+〉 = Fkl +Gkl (A.1)
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where

Gkl=−iθ(t)〈ck(t)c†l (0)〉 Fkl=−iθ(t)〈c†l (0)ck(t)〉. (A.2)

The brackets denote the thermal average, 〈...〉 =
tr(... exp(−βH))/tr(exp(−βH)).
With PN = trN exp(−βH)/tr exp(−βH), we write the
trace as a sum of terms with a fixed number N of electrons
on the dot,

Gkl = −iθ(t)
∞∑
N=0

PN 〈ck(t)c†l (0)〉N =
∞∑
N=0

G
(N)
kl . (A.3)

In the “equation of motion” method the Green function is
differentiated with respect to time. Since the time evolu-
tion of an operator is given by the commutator with the
Hamiltonian, a system of differential equations containing
higher-order Green functions is generated. A closed system
is obtained if these Green functions can be approximately
uncoupled. The solution is obtained by Fourier transfor-
mation. Specifically,

∂

∂t
G

(N)
ij = −iδ(t)〈ci(0)c†j(0)〉N − θ(t)〈[ci,H](t)c†j(0)〉N

(A.4)

= −iδ(t)〈ci(0)c†j(0)〉N

− θ(t)
(

(εi − µ)〈ci(t)c
†
j(0)〉N + U〈N(t)ci(t)c

†
j(0)〉N

)
− θ(t)

∑
k

(
V L∗
ki 〈ak(t)Lc†j(0)〉N + V R∗

ki 〈ak(t)Rc†j(0)〉N
)
.

(A.5)

Since the interaction contains two creation and two anni-
hilation operators a two particle Green function appears
in the second line. The last two terms stem from the cou-
pling to the leads, and by another equation of motion can
be expressed in terms of the Green function for the dot.
Assuming that the states in the lead and in the dot are
uncorrelated at t = 0 we obtain

〈ak(t)c†j(0)〉N =
∑
i

V L
ki

∫
dt̄G

(N)
ij (t− t̄)θ(t̄) exp(−iεLk t̄). (A.6)

Fourier transformation of equation (A.5) yields

ωG
(N)
ij =〈1− ni〉Nδij + (εi − µ)G

(N)
ij + UG̃ij

+
∑
kl

(
V L∗
ki V

L
kl

ω − εLk + iδ
+

V R∗
ki V

R
kl

ω − εRk + iδ

)
G

(N)
lj (A.7)

where G̃ij = −i
∫

dtθ(t)〈N(t)ci(t)c
†
j〉N exp iωt. The equa-

tions of motion are closed by assuming the total occupa-
tion N to be constant. Then the number operator can be
taken out of the expectation value. The assumption is jus-
tified in the valleys between resonances whereas at each
resonance, N fluctuates. For isolated resonances (level
width� level spacing), we have Im

∑
k V

L∗
ki V

L
kl/(ω− ε

L
k +

iδ) = −iδilΓ
L
i /2. This yields

G
(N)
ij =

δij〈1− ni〉N
ω − (εi − µ+ UN) + iΓL

i /2 + iΓR
i /2
· (A.8)

For Fij we proceed analogously and eventually obtain
equation (14).

References

1. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S.
Tarucha, R.M. Westervelt, N.S. Wingreen, Proceedings of
the NATO Advanced Study Institute on Mesoscopic Elec-
tron Transport, edited by L.P. Kouwenhoven, L. Sohn, G.
Schön (Kluwer Series E, 1997).

2. D.V. Averin, Yu.N. Nazarov, Phys. Rev. Lett. 76, 1695
(1990).

3. R. Jalabert, A.D. Stone, Y. Alhassid, Phys. Rev. Lett. 68,
3468 (1992).

4. A.M. Chang, H.U. Baranger, L.N. Pfeiffer, K.W. West,
T.Y. Chang, Phys. Rev. Lett. 76, 1695 (1996).

5. J.A. Folk, S.R. Patel, S.F. Godijin, A.G. Huibers, S.M.
Cronenwett, C.M. Marcus, Phys. Rev. Lett. 76, 1699
(1996).

6. U. Sivan, R. Berkovits, Y. Aloni, O. Prus, A. Auerbach,
G. Ben-Yoseph, Phys. Rev. Lett. 77, 1123 (1996).

7. Y. Alhassid, M. Gökcedag, A.D. Stone, Phys. Rev. B 58,
R7524 (1998).

8. R. Berkovits, U. Sivan, Europhys. Lett. 41, 653 (1998).
9. R.O. Vallejos, C.H. Lewenkopf, E.R. Mucciolo, Phys. Rev.

Lett. 81, 677 (1998).
10. S.R. Patel, D.R. Stewart, C.M. Marcus, M. Gökcedag, Y.

Alhassid, A.D. Stone, C.I. Duruöz, J.S. Harris Jr., Phys.
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